B.Sc. 6th Semester (Honours) Examination, 2020-21 PHYSICS

Course ID: 62412 Course Code: SH/PHS/602/C-14/T-14

Course Title: Statistical Mechanics (T14)

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Section-I

1. Answer any *five* questions:

 $1\times5=5$

- a) Give an example of canonical and grand canonical ensemble.
- b) How do you connect the statistical mechanics and thermodynamics?
- c) What do you mean by statistical equilibrium?
- d) Compare BE and FD distribution functions graphically.
- e) Write down Sackur-Tetrode formula.
- f) What do you mean by chemical potential of a system?
- g) Does electron have zero energy at 0 K? If not why?
- h) Calculate the number of ways of arranging 10 Fermions in 15 phase cells.

Section-II

2. Answer any two questions:

 $5 \times 2 = 10$

- a) How can you determine the Fermi level from the knowledge of particle density in the system? Sketch the Fermi distribution function for T = 0K and T > 0K. (4+1)
- b) What is Bose-Einstein condensation? Using BE statistics, describe Plank's law for black body radiation in terms of wavelength. (1+4)
- c) (i) Define ensemble and partition function in the context of statistical mechanics.
 - (ii) A system of N particles obeying MB-statistics possesses three energy levels $E_1 = 0$, $E_2 = \epsilon$, $E_3 = 10\epsilon$. Find the temperature below which the levels E_1 and E_2 are occupied. What is the average energy <E> of the system at temperature T? (2+3)

Please Turn Over

d) Discuss the temperature variation of Fermi level (E_f). Show that the average KE per electron for a 3-D free electron gas at 0 K is $\bar{E}_0 = \left(\frac{3}{5}\right) \bar{E}_{f(0)}$. Under what limiting condition the FD and BE distribution functions tend to MB distribution? (3+1+1)

Section-III

3. Answer any *one* question:

 $10 \times 1 = 10$

- a) (i) Write down the partition function for quantum harmonic oscillator and calculate the heat capacity.
 - (ii) Assuming the electrons to be free, calculate the total number of states below E = 5 eV in a volume 10^{-5} m^3 .
 - (iii) What is Gibb's Paradox? What is its origin? Discuss how this paradox can be resolved. (4+3+3)
- b) (i) Define Phase space. A particle moves in 1D space under a potential V = a|x| with some non-zero kinetic energy, where a>0. Draw the phase space trajectory.
 - (ii) Why the elementary volume of a cell in phase space for quantum particle cannot be zero?
 - (iii) Derive the equation for number of phase space cells in the energy interval E and E+dE.

(1+3)+2+4