B.SC. SIXTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics Course ID: 62116

Course Code: SH/MTH/603/DSE-3 Course Title: Number Theory

Full Marks: 40 Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning.

1. Answer any five of the following questions:

 $(2 \times 5 = 10)$

- a) Show that $\sum_{k=1}^{n} \mu(k!) = 1$.
- b) Solve the linear congruence $7x \equiv 3 \pmod{15}$.
- c) "If (m, n) = 1, then $(\phi(m), \phi(n)) = 1$ "—true or false? Justify with proper reason.
- d) Find the order of 5 modulo 17.
- e) Find the remainder when 333^{333} is divided by 7.
- f) Find the sum of integers less than 100 and prime to 100.
- g) If a is a primitive root of m, then prove that $a^{\frac{\phi(m)}{2}} \equiv -1 \pmod{m}$.
- h) Prove that if n is an odd integer, then $n^2 1$ is divisible by 8.

2. Answer any four of the following questions:

 $(5 \times 4 = 20)$

- a) Find the least positive integer which leaves remainders 2, 3 and 4 when divided by 3, 5 and 11, respectively.
- b) (i) If f(n) is a function of n, then prove that $\sum_{d|n} f(d) = \sum_{d|n} f\left(\frac{n}{d}\right)$, where n is a positive integer ≥ 1 .

(ii) Prove that
$$n = \sum_{d|n} \phi(d)$$
, for an integer $n \ge 1$.

3+2

c) (i) If f(n) is a multiplicative function(not identically zero), then prove that

$$\sum_{d|n} \mu(d) f(d) = (1 - f(p_1)) (1 - f(p_2)) \cdots (1 - f(p_k)).$$

(ii) Verify that 1000! terminates in 249 zeros.

2+3

- d) Prove that:
 - (i) The necessary and sufficient condition that 'a', when (a,m)=1, to be a primitive root of m is that the numbers $a,a^2,\cdots,a^{\phi(m)}$ forms a reduced residue system modulo m.
 - (ii) If a is a primitive root of p, then prove that a + p is also its primitive root. 2+2+1

- e) Prove that if p is an odd prime, then there exists an odd primitive root of $p^k \ \forall \ k \ge 1$. Also each such primitive root of p^k is a primitive root of $2p^k$.
- f) Find the solutions of 3x + 5y + 10z = 151.

3. Answer any one of the following questions:

 $(10 \times 1 = 10)$

- a) (i) If n is a composite number, then show that $(n) \le n \sqrt{n}$.
 - (ii) If $m = 2^n$, n > 2, then prove that m has no primitive root.
 - (iii) Prove that $n^5 n$ is divisible by 5 or 2, for any integer n.
 - (iv) If m and n are relatively prime positive integers, prove that

$$m^{\emptyset(n)} + n^{\emptyset(m)} \equiv 1 \pmod{mn}$$
.

2+2+2+4

- b) (i) If a is a primitive root of p and p is an odd prime such that a^{p-1} is not congruent to 1 modulo p^2 , then show that for every $\alpha \geq 2$, $a^{\phi(p^{\alpha-1})}$ is not congruent to 1 modulo p^{α} .
 - (ii) Find the number of zeros at the right end of the integer 141!.
 - (iii) Prove Euler's Theorem.

5+2+3
