B.SC. SIXTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics Course ID: 62112

Course Code: SH/MTH/602/C-14 Course Title: Ring Theory and Linear Algebra II

Full Marks: 40 Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning.

1. Answer any five from the following questions:

 $2 \times 5 = 10$

- a) Find the irreducible elements in a field.
- **b)** Is the polynomial ring $\mathbb{Z}_6[x]$ an integral domain? Justify your answer.
- c) Is the polynomial $f(x) = x^3 9x^2 + 15x 2$ irreducible over \mathbb{Q} ? Justify your answer.
- **d)** Find the dual space of the vector space \mathbb{R}^2 over \mathbb{R} .
- **e)** Give an example of a linear operator on \mathbb{R}^3 over \mathbb{R} whose characteristic polynomial and minimal polynomial are same.
- **f)** Define a diagonalizable operator on a vector space.
- g) Let (V, <>) be an inner product space and S be a subset of V. Prove that the orthogonal complement of S is a subspace of V.
- **h)** Let (V, <>) be an inner product space. Prove that if $<\alpha, \beta>=0$ for all $\beta \in V$, then $\alpha=0$.

2. Answer any four from the following questions:

 $5 \times 4 = 20$

- a) In a PID, prove that an irreducible element is always prime. Is the ring $\mathbb{Z}[\sqrt{-5}]$ a factorization domain? Justify your answer. 3+2=5
- b) Let R be a commutative ring with identity. Prove that R is a field if and only if R[x] is a PID.
- c) (i) Let W be an invariant subspace of V under T. Prove that the characteristic polynomial of the restriction operator $T|_W$ divides the characteristic polynomial of T. Also prove that the minimal polynomial of $T|_W$ divides the minimal polynomial of T.
 - (ii) Give an example of a linear operator T on the vector space \mathbb{R}^2 over \mathbb{R} such that the only invariant subspaces under T are $\{0\}$ and \mathbb{R}^2 . (2+1)+2=5

- d) Let V be a finite dimensional vector space over the field F and T be a linear operator on V. Define the minimal polynomial of T. If T is diagonalizable, then prove that the minimal polynomial for T is a product of distinct linear factors. 1+4=5
- e) Consider the vector space \mathbb{R}^4 over \mathbb{R} with the standard inner product. Let S be the subspace of \mathbb{R}^4 consisting of all vectors which are orthogonal to both (1,0,-1,1) and (2,3,-1,2). Find an orthonormal basis for S.
- f) Consider the vector space \mathbb{R}^3 over \mathbb{R} equipped with the standard inner product. Applying Gram-Schmidt orthogonalization process, orthonormalize the following set of vectors: $\{(3,0,4), (-1,0,7), (2,9,11)\}.$

3. Answer any one from the following questions:

 $10 \times 1 = 10$

- a) (i) Is the ring $\mathbb{Q}[x] / < x >$ isomorphic to \mathbb{Q} ? Justify your answer.
 - (ii) Consider the polynomial $f(x) = 5x^4 + 4x^3 6x^2 14x + 2 \in \mathbb{Z}[x]$. Check the irreducibility of f in \mathbb{Z} .
 - (iii) Let F be a field and D denote the differentiation operator on the vector space F[x]. Let $W = \{g(x) \in F[x] | \deg(g) \le 20\}$. Prove that W is invariant under D.
 - (iv) Let V be the vector space \mathbb{C}^2 over \mathbb{C} and let $\mathcal{B}=\{\epsilon_1,\epsilon_2\}$ be the standard ordered basis of V. Let T be the linear operator on V defined by $T(\epsilon_1)=(1+i,2), T(\epsilon_2)=(i,i)$. Using the standard inner product, find T^* . 3+2+2+3=10
- b) (i) Find the gcd of the following polynomials in $\mathbb{Z}_5[x]$: $f(x) = \overline{2}x^5 \overline{2}x^4 + \overline{2}x^3 \overline{2}x \overline{2}$, $g(x) = x^4 \overline{2}x^2 + \overline{2}$.
 - (ii) Find all possible Jordan canonical forms for a linear operator up to similarity whose characteristic polynomial is $(x-2)^4(x-3)^2$ and minimal polynomial is $(x-2)^2(x-3)$.
 - (iii) Let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be an orthogonal set of non-zero vectors in an inner product space

 $V. \text{ If } \beta \in V \text{ then prove that } \sum_{k=1}^{n} \frac{|\langle \beta, \alpha_k \rangle|^2}{\big||\alpha_k|\big|^2} \leq \big||\beta|\big|^2.$ 4+4+2=10
