B.SC. SIXTH SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics Course ID: 62111

Course Code: SH/MTH/601/C-13 Course Title: Metric Spaces and Complex Analysis

Full Marks: 40 Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:

 $(2 \times 5 = 10)$

- a) Let d be the metric define on \mathbb{N} , the set of natural numbers, by $d(m,n) = \left| \frac{1}{m} \frac{1}{n} \right|$, $m,n \in \mathbb{N}$. Prove that (\mathbb{N},d) is an incomplete metric space.
- b) Let A be a subset of a metric space (X,d) and $y \in X$. If there is a sequence $\{x_n\}$ in A converging to y, then show that $y \in \overline{A}$.
- c) Are the concepts of compactness and connectedness for subsets of a metric space are dependent? Justify.
- d) Prove that the set $A = \{x \in \mathbb{R}: |x| > 0\}$ of \mathbb{R} with usual metric is disconnected.
- e) Prove or disprove: "A real function of a complex variable either has derivative zero or the derivative does not exist".
- f) Let f be analytic and |f(z)| < 1 for |z| < 1, prove that $|f^3(z)| \le \frac{6}{(1-r)^3}$ for |z| < r < 1.
- g) Show that the function $f(x+iy)=x^3+ax^2y+bxy^2+cy^3$, where a,b,c are complex constants, is analytic in $\mathbb C$ only if a=3i,b=-3,c=-i.
- h) Evaluate $\int_{|z|=1}^{.} \frac{z+3}{z^4+az^3} dz$, |a| > 1.

2. Answer any four of the following questions:

 $(5 \times 4 = 20)$

- a) (i) Let (X, d) be a metric space. Suppose that every real valued continuous function on (X, d) satisfies the intermediate value property. Prove that (X, d) is connected.
 - (ii) Give an example with justification of a complete metric space which is not compact.

3+2

- b) (i) Show that a bounded set A in the set of real numbers $\mathbb R$ is totally bounded. Is the converse true? Justify.
 - (ii) Is a Cauchy sequence in a metric space bounded? Justify.

3+2

- c) (i) Let (X, d_1) and (Y, d_2) be metric spaces, and let $f: (X, d_1) \to (X, d_2)$ be a continuous function on (X, d_1) and for each $x \in X$, V is a neighbourhood of f(x) in Y. Is $f^{-1}(V)$ a neighbourhood of x in X. Justify.
 - (ii) In the metric space C[0,1], the set of all real valued continuous functions on [0,1] with respect to \sup metric, examine whether $\{f_n\}$ where $f_n(x)=\frac{nx}{n+x}$ is a Cauchy sequence or not.
- d) Show that $f(z)=\sqrt{r}e^{i\theta/2}$ $(r>0,\ -\pi<\theta<\pi)$ is analytic in its domain and $f'(z)=\frac{1}{2f(z)}$.
- e) Let $\gamma(t)=e^{it}$, $0\leq t\leq 2\pi$. Evaluate $\int_{\gamma}^{\cdot}\frac{\cos z}{z}dz$ and hence deduce that $\int_{0}^{2\pi}\cos(\cos\theta)\cosh(\sin\theta)d\theta=2\pi.$ 2+3
- f) (i) Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for 1 < |z-2| < 2.
 - (ii) If f(z) is differentiable in a region G and |f(z)| is constant in G, then show that f(z) is constant in G.
- 3. Answer any one of the following questions:

 $(10 \times 1 = 10)$

a) (i) Let f be analytic in the domain $D = \{z \in \mathbb{C} : |z| < 2\}$. Prove that

$$2f(0) + f'(0) = \frac{2}{\pi} \int_0^{2\pi} f(e^{i\theta}) \cos^2\left(\frac{\theta}{2}\right) d\theta.$$

- (ii) A subset Γ of the real line \mathbb{R} , with at least two points is connected if Γ is an interval prove it.
- (iii) If every closed ball in a metric space is compact, prove that the metric space is complete. 4+3+3
- b) (i) Let (X, d) be a bounded metric space with at least two points. If $T: X \to X$ is a contraction map, then T can not be surjective.
 - (ii) Prove that $\left|\int_{\gamma} (z+1)^2 dz\right| \le 9\sqrt{5}$, where $\gamma(t) = 2 t(2-i)$, $t \in [0,1]$.
 - (iii) Find the Laurent series for $f(z)=\frac{1}{(z+1)(z-2)^2}$ valid for the annular region given by 0<|z+1|<3. 3+3+4
