B.Sc. 6th Semester (Honours) Examination, 2021

CHEMISTRY

(Inorganic Chemistry V)

Paper : UG/CHEM/601/C-13 Course ID: 61411

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

 $5\times1=5$

- (a) Complete: $(Cp)_2Fe \xrightarrow{HCHO,Me_2\ NH\ (Acetic\ acid)}$?
- (b) Which among Cl⁻ and I⁻ has a higher ⁿP_t value?
- (c) How many double bonds are observed in porphyrin ligand?
- (d) Calculate the value of "n" in $(\eta^5-Cp)Co(CO)_n$.
- (e) Name a potent anticancer platinum complex. Write its formula.
- (f) Name a catalyst used in hydroformylation reaction.
- (g) Draw the active site structure of carbonic anhydrase B.
- (h) What is spectator ligand?
- 2. Answer any two questions:

 $2 \times 5 = 10$

3+2=5

- (a) (i) Arrange the following in order of increasing C-O stretching frequency: $[Ni(CO)_4]$, $[Cr(CO)_6]$, $[V(CO)_6]^-$.
 - (ii) Show that each iron in $Fe_3(CO)_{12}$ conforms to the 18-e rule..
- (b) (i) Platinum compounds are generally used as targets for trial anti-cancer compounds but not palladium or nickel comment.
 - (ii) How can you prove the free rotations of cyclopentadiene rings with respect to one another? 3+2=5

Please Turn Over

- (c) (i) What is Zieger Natta Catalyst?
 - (ii) Draw the catalytic cycle of hydroformylation reaction?

2+3=5

(d) (i) Predict the products of the following reaction and justify your answer:

cis-
$$[Pt(NH_3)_2(py)_2]^{2+} + 2Cl^- \rightarrow ?$$

(ii) A stable complex may be labile – comment.

3+2=5

3. Answer *any one* question:

 $1 \times 10 = 10$

- (a) (i) Discuss the structure and bonding in Zeise's salt.
 - (ii) Define associative (A), dissociative (D) and interchange (I) paths in inorganic reaction mechanism.
 - (iii) Discuss briefly the structural features of hemocyanin and its role in oxygen transport.

3+3+4=10

- (b) (i) What happens in PS-I and PS-II in photosynthesis.
 - (ii) What is trans effect? Explain the trans effect of the halogens on the basis of polarization theory.
 - (iii) Explain the catalytic cycle for the hydrogenation of terminal alkenes by Wilkinson's catalyst. 3+3+4=10
