CHEMISTRY

Course ID: 51412
Course Code: UG/CHEM/502/C-12

Course Title: Organic Chemistry V

Time: 1 Hour 15 Minutes

Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
a) Give the structure of Diels-Alder adduct formed by anthracene and maleic anhydride.
b) 'Pyrrole is protonated at 3-position' - Comment.
c) Write the structure of the product formed in the reaction of lysine with two equivalents of benzyloxycarbonyl chloride.
d) Write the most stable conformation 1-methyl-1-phenylcyclohexane.
e) What happens when the following compound is heated?

f) Write the equilibrium between two anomeric forms of D-Mannose. Which one is more stable?
g) Arrange the aminoacids in order of increasing isoelectric points: neutral aminoacids, acidic aminoacids and basic aminoacids.
h) What is meant by specific base pairing with respect to DNA and RNA?
2. Answer any two questions:

$$
5 \times 2=10
$$

a) i) How can you synthesize $2,4,6$-trimethyl pyridine starting from a suitable substrate?
ii) Compare the basicity of 2-methyl indole and 3-methyl indole. $3+2=5$
b) i) Outline the reaction pathway to convert: D-arabinose to D-mannose.
ii) Compare the rate of bromine water oxidation of $\alpha-(\mathrm{D})$-glucose and β-(D)-glucose.
iii) Predict the products of the following reaction indicating the mechanism:

$$
\alpha \text {-(D)-Glucose } \xrightarrow[\Delta]{\text { aq. } \mathrm{NaOH}} \text { ? }
$$

$$
1^{1 / 2}+1^{1 / 2}+2=5
$$

c) i) Trace the route for synthesis of $\mathrm{Ph}-\mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CO}_{2} \mathrm{H}$ from phthalimide.
ii) How is N-terminal aminoacid determined by Edman method? Why is it more advantageous than Sanger's method?
$2+3=5$
d) i) Arrange the following dienes in order of increasing reactivity in Diels-Alder cycloaddition with tetracyanoethylene. Give suitable explanation in favor of your choice.
A)

B)

C)

ii) Predict the products of the following reactions and give the mechanism.

$$
2+1^{1 / 2}+1^{1 / 2}=5
$$

3. Answer any one question:
a) i) Using 2,5-diketopiperazine, how would you synthesize tyrosine?
ii) How will you synthesize the tripeptide Phe-Gly-Ala, applying Merrifield methodology and using t-butyloxycarbonyl group as N -protecting group?
iii) Discuss the mechanism of osazone formation. Why osazone formation does not proceed beyond the first two carbon atoms?
iv) Write the structures of the products- $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$ with rationalization.

D-Glucose $\xrightarrow[\mathrm{H}^{+}]{\mathrm{MeOH}} A \xrightarrow[\mathrm{ZnCl}_{2}]{\mathrm{Ph}-\mathrm{CHO}}$ B $\xrightarrow[\text { Base }]{\mathrm{MeI}} \mathrm{C} \xrightarrow[\mathrm{H}_{2} \mathrm{O}]{\mathrm{HCl}} \mathrm{D}$

$$
3+2+3+2=10
$$

b) i) Predict the Product(s) with mechanism:

B) $\mathrm{Me}_{2} \mathrm{~N} \xrightarrow{\stackrel{\text { OTs }}{ } \xrightarrow{\text { i) } \mathrm{Et}_{3} \mathrm{~N} / \mathrm{EtOH}, \Delta} \Delta \text { ? } \mathrm{H}^{+} / \mathrm{H}_{2} \mathrm{O} \text { (mild) }}$?
ii) Trans-4-tert-butylcyclohexane-ethylcarboxylate undergoes saponification at a much faster rate than the $c i s$-isomer. Explain.
iii) Predict the product(s) of the following reactions:
A)

B) $\mathrm{Ph}-\mathrm{C} \equiv \mathrm{C}-\mathrm{Ph}+$

iv) Point out the salient features of the double helix structure of DNA.

$$
3+2+3+2=10
$$

