SH-V/CHEM-501/C-11/19

B.Sc. 5th Semester (Honours) Examination, 2019-20 CHEMISTRY

Course ID : 51411

Course Code : UG/CHEM-501/C-11

Course Title: Inorganic Chemistry (IV)

Time: 1 Hour 15 Minutes

The figures in the right hand side margin indicate marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

- (a) Give an example of each for MLCT and LMCT transition.
- (b) Find out the Russel-Saunder's ground state term symbol for Mn(IV).
- (c) What is the $\mu_{s.o.}$ of $[Cr(H_2O)_6]^{3+}$?
- (d) Calculate the CFSE of a high spin octahedral d^5 system.
- (e) What is the significance of Racah parameters?
- (f) Which parameters are plotted in an orgel diagram?
- (g) Mention two consequences of lanthanide contraction.
- (h) Write down the outer electronic configuration of the *nf* elements.
- 2. Answer *any two* questions:
 - (a) (i) Compare the magnetic behaviour of $[C_0F_6]^{3-}$ with that of $[C_0(CN)_6]^{3-}$ on the basis of CFT.
 - (ii) Lanthanide elements show the common stable oxidation state of +3 comment.

3+2=5

 $5 \times 2 = 10$

- (b) (i) CrF_2 and MnF_2 both have a central metal ion surrounded by Six F⁻ ligands. The Mn F bond lengths are equidistant, but four of the Cr F distances are long and two are short. Provide an explanation.
 - (ii) What do you mean by magnetic super exchange? 3+2=5
- (c) (i) Discuss the spectral properties of lanthanoids and compare them with those of the d-block metals.
 - (ii) What are the factors that affect the magnitude of crystal field splitting? 3+2=5
- (d) (i) Explain when Δ and CFSE are zero.
 - (ii) $MnSO_4$ is pale but $KMnO_4$ has a deep colour explain.
 - (iii) Write down the electronic configuration of Gd^{3+} . 2+2+1=5

51411/16481

Full Marks: 25

$1 \times 5 = 5$

- (a) (i) $[Zn(CN)_4]^{2-}$ is tetrahedral but $[Ni(CN)_4]^{2-}$ is square planar why?
 - (ii) Tetrahedral low spin complexes are rare explain.
 - (iii) Why OH^- ion is in lower position than H_2O in spectrochemical series.

(2)

- (iv) A light pink aqueous Co(II) chloride solution becomes deep blue on addition of excess HCl. Account for the fact.
- (v) Write down the selection rules for electronic transitions. 2+2+2+2=10
- (b) (i) Explain the principle involved in the separation of individual lanthanides by ion-exchange technique.
 - (ii) State two limitations of Valence Bond Theory.
 - (iii) Why the d-orbital splitting diagram is reversed in tetrahedral and octahedral fields?
 - (iv) Magnetic moment of copper (II) acetate dihydrate is less than expected why?
 - (v) 'Ni(II) forms tetrahedral and octahedral complexes respectively with ligands such as Cl⁻ and NH₃ but Pd(II) and Pt(II) form square planar complexes with both the ligands' Explain.

2+2+2+2=10