SH-II/Physics/202/C-4/19

B.Sc. 2nd Semester (Honours) Examination, 2019 PHYSICS

(Waves and Optics)

Paper : 202/C-4 Course ID : 22412

Time: 1 Hour 15 Minutes

The figures in the right hand side margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

- (a) Write down Huygens' principle of wave front propagation.
- (b) What is coherence length and coherence time?
- (c) The equation of a progressive wave is given by, $y = 0.1 \sin(0.01 x 0.1 t)$, where x and y are in m and t is in s. Find the time period of the wave.
- (d) What is Rayleigh criteria of resolution?
- (e) Define damping coefficient and find its dimension.
- (f) State the condition under which transverse vibration of string is affected by tension only and not by rigidify.
- (g) What is Ghost line in diffraction grating?
- (h) Write two applications of Fabry-Perot interferometer.

Answer *any two* questions:

- **2.** (a) What is phase velocity?
 - (b) The dispersion relation for microwaves in ionosphere is given by, $\omega^2 = \omega_p^2 + c^2 k^2$. Where *c* is the velocity of light in free space and ω_p is a constant depending upon the electron density of the ionosphere. Show that the phase velocity c_p is greater than *c*.
 - (c) Two vibrations along the same line are described by, $x_1 = 0.03 \cos 10\pi t$ and $x_2 = 0.03 \cos 12\pi t$. Find beat frequency and beat amplitude. 1+2+2=5
- **3.** What is meant by resonance in a mechanical system? Distinguish between amplitude and velocity resonance. Define sharpness of resonance. 1+2+2=5
- 4. Define interference of light waves. In two beam interference pattern deduce an expression for fringe width. What is the nature of the central fringe in case of Lloyd's mirror experiment? 1+3+1=5
- 5. Deduce the relationship between resolving power and magnifying power of a telescope. Write some applications of holography. 3+2=5

Please Turn Over

Full Marks: 25

5×2=10

 $1 \times 5 = 5$

Answer any one question:

- 6. (a) Find the resultant amplitude and phase due to superposition of N collinear harmonic oscillation with equal phase differences.
 - (b) In Young's double slit experiment, the separation between the slits is 1.2 mm and fringe width is 0.5 mm on a screen kept at a distance of 1 m from the slits. Find the wavelength λ of the incident light.
 - (c) What do you mean by Ripple waves? 5+3+2=10
- **7.** (a) Find an expression for the intensity at a point due to Fraunhofer diffraction through a plane transmission grating.
 - (b) A damped harmonic oscillator has the first amplitude of 20 cm. It reduces to 2 cm after 100 oscillations, each of period 4.6 S. Calculate the logarithmic decrement and damping constant. 7+3=10