B.SC. SECOND SEMESTER (HONOURS) EXAMINATIONS, 2021

Subject: Mathematics Course ID: 22111

Course Code: SH/MTH/201/C-3 Course Title: Real Analysis

Full Marks: 40 Time: 2 Hours

The figures in the margin indicate full marks

Notations and symbols have their usual meaning

1. Answer any five of the following questions:

 $(2 \times 5 = 10)$

- a) Explain why the Bolzano Weierstrass theorem (for sets as well as for sequences) does not hold in the system of rational numbers.
- b) If no points of a set $S \subseteq \mathbb{R}$ are its limit points then prove that S is at most countable.
- c) Let $S \subseteq \mathbb{R}$ and $S + a = \{x + a, x \in S, a \in \mathbb{R}\}$. Show that $\sup(S + a) = \sup S + a$.
- d) Prove that if x is an arbitrary real number, there is a sequence $\{r_n\}_n$ of rational numbers converging to x.
- e) Give an example with justification of a set in \mathbb{R} which is neither open nor closed.
- f) Show that the sequence $\{S_n\}$ is convergent where $S_n = \frac{1}{1!} + \frac{1}{2!} + \cdots + \frac{1}{n!}$
- g) Check whether the sequence $\{S_n\}$ where $S_{n+1}=\sqrt{3}S_n$ and $S_1=1$ is bounded and monotonic.
- h) Test the convergence of the series $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \cdots$

2. Answer any four of the following questions:

 $(5 \times 4 = 20)$

a) Using Cauchy's integral test discuss the convergence of the following series

$$\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$$

for different values of p.

- b) Let A be a nonempty subset of $\mathbb R$ and x be any real number. Let us define $d(x,A) = \inf \left\{ |x-a| : a \in A \right\}.$ Show that d(x,A) = 0 if and only if $\epsilon \bar{A}$, where \bar{A} denotes the closure of A.
- c) Discuss the convergence or divergence of $\{x_n\}_n$ where

$$x_n = \frac{\alpha^n - \beta^n}{\alpha^n + \beta^n}$$

where α and β are real numbers such that $|\alpha| \neq |\beta|$.

d) Let $S_1=\{x\in\mathbb{R}: \sin x=0\}$ and $S_2=\Big\{x\in\mathbb{R}: \cos\frac{1}{x}=0\Big\}$. Test whether the sets S_1 and S_2 are open or closed.

e) If $\{P_n\}_n$ is a monotone non-increasing sequence of positive terms such that $\lim_{n\to\infty}P_n=0$, show that the series

$$P_1 - \frac{1}{2}(P_1 + P_3) + \frac{1}{3}(P_1 + P_3 + P_5) + \cdots$$

is convergent.

f) If $x \in \mathbb{R}^+$ then show that there exists $a \in \mathbb{R}$ such that $a^2 = x$ where \mathbb{R}^+ is the set of all positive real numbers.

3. Answer any one of the following questions:

 $(10 \times 1 = 10)$

- a) (i) Without assuming any theorem or result, prove that every closed subset of a compact set is a compact set.
 - (ii) Suppose that $\{S_n\}_n$ is a sequence for which there exists a constant c such that

$$\forall n \in \mathbb{N}, \qquad |S_{n+1} - S_n| < \frac{c}{2^n}.$$

Show that $\{S_n\}_n$ is a Cauchy sequence.

5+5

- b) (i) Prove that a bounded sequence is convergent if and only if $\overline{lim}a_n = \underline{lim}a_n$.
 - (ii) Prove that every finite subset of \mathbb{R} is a closed set and it has no limit point.
 - (iii) Using Cauchy's general principle, prove that the sequence $\{\,a_n\}$ is not convergent where

$$a_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
. 3+3+4
