B.Sc. Semester-II (Honours) Examination, 2018 CHEMISTRY

Subject Code : 21402

Course Title : Organic Chemistry-II

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

(a) Separate the following species into electrophiles and nucleophiles:

 CH_3OH , SO_3 , NH_3 , Br^+

(b) List the following in order of decreasing acidity:

 $CH_3CH \stackrel{+}{=} NH_2$, $CH_3CH_2 \stackrel{+}{N}H_3$, $CH_3C \stackrel{+}{=} NH$

(c) Write down the conjugate acid/conjugate base forms for the following:

 $\overline{OCH}_3, \overline{CH}_3$

- (d) Define the term 'dihedral angle'.
- (e) Mention the solvent characters of the following:

HCOOH, CCl₄, H₂O, CH₃CN

(f) Arrange the following in order of increasing basicity:

(g) Classify the following reaction as substitution, elimination or neither.

BNK21402

Please Turn Over

1×5=5

Full Marks: 25

Course Code : SH/CHEM/202/C4

(h) Which one of the following has higher enol content? Give reason.

- 2. Answer *any two* questions:
 - (a) (i) Assuming only E² elimination, write structures for all the possible elimination products of the following and indicate the major product.

(ii) Write the structure of a proton tautomer of each of the following:

$$CH_3 NH CH = CH CH_3, CH_3 NO_2$$

(iii) Predict the structure of Product(s) with mechanism when the following compound is heated.

- (b) What is butane-gauche interaction? Draw the potential energy diagram of *n*-butane for rotation around C2—C3 bond showing the conformers in Newman projection formula. 5
- (c) (i) Name the fragments in the homolytic and heterolytic cleavage in ethane C—C bond. 3
 - (ii) Compare the extents of enol content of the following compound in water and in hexane solvents.

CH₃COCH₂COO CH₂CH₃

(d) (i) Draw an energy diagram for a one-step endergonic process. Label it with respect to the reactants, transition state, free energy of activation and standard free energy of reaction.
 3

BNK21402

1

2

2

 $5 \times 2 = 10$

(3)

3. Answer *any one* question:

- (a) (i) What is meant by nucleophilicity? Arrange the following anions in order of increasing nucleophilicity in polar aprotic solvent. Give reason. 1+2=3
 F⁻, Br⁻, Cl⁻, I⁻
 - (ii) Draw one active and one meso isomer of HOOC(CHOH)₃COOH in Fischer's Projection formula. Will the interchange of H and OH at C-3 of the active isomer you have drawn lead to another stereoisomer?
 - (iii) Propose a mechanism for the following reaction that explains how this product is generated.

- (iv) What is meant by atropisomerism?
- (v) An alkane (Molecular Weight 72) formed only one monochloro substitution product. Suggest
 a structure for the alkane. 1¹/₂
- (b) (i) Trace the following interconversions and assign R/S configuration to each stereogenic centre.
 Show appropriate reagents, catalysis and solvents.

(R) -2- Butanol \longrightarrow Tosylate \xrightarrow{Br} acetone

BNK21402

1

2

 $10 \times 1 = 10$

(4)

(ii) Identify the product in the following reaction and justify your answer.

Cl CH₂ CH₂ CH CH₂ CH₃
$$\xrightarrow{\text{NaI} (1 \text{ mole})}$$
 C₅H₁₀ClI
Cl

Predict the product(s) of the following reaction with plausible mechanism.

Cl—CH₂—CH—¹⁴CH₂
$$\xrightarrow{\text{NaOMe}(1 \text{ eq.})}$$

O MeOH ?

(iii) Write the enantiomeric forms of $CH_3CH = C = CHCH_3$. Give reason. $1\frac{1}{2}$

(iv) What is meant by 'protonsponge'? Give one example.

BNK21402

21/2

1+1=2