B.Sc. Semester-II (Honours) Examination, 2018 CHEMISTRY

Course Title : Organic Chemistry-II

Time: 1 Hour 15 Minutes
Full Marks: 25

The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

1. Answer any five questions:
(a) Separate the following species into electrophiles and nucleophiles:
$\mathrm{CH}_{3} \mathrm{OH}, \mathrm{SO}_{3}, \mathrm{NH}_{3}, \mathrm{Br}^{+}$
(b) List the following in order of decreasing acidity:

(c) Write down the conjugate acid/conjugate base forms for the following:

(d) Define the term 'dihedral angle'.
(e) Mention the solvent characters of the following:
$\mathrm{HCOOH}, \mathrm{CCl}_{4}, \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}$
(f) Arrange the following in order of increasing basicity:

(g) Classify the following reaction as substitution, elimination or neither.

(h) Which one of the following has higher enol content? Give reason.

and

2. Answer any two questions:
(a) (i) Assuming only E^{2} elimination, write structures for all the possible elimination products of the following and indicate the major product.

(ii) Write the structure of a proton tautomer of each of the following:

$$
\begin{equation*}
\mathrm{CH}_{3} \mathrm{NHCH}=\mathrm{CHCH}_{3}, \mathrm{CH}_{3} \mathrm{NO}_{2} \tag{1}
\end{equation*}
$$

(iii) Predict the structure of Product(s) with mechanism when the following compound is heated.

(b) What is butane-gauche interaction? Draw the potential energy diagram of n-butane for rotation around C2-C3 bond showing the conformers in Newman projection formula.
(c) (i) Name the fragments in the homolytic and heterolytic cleavage in ethane $\mathrm{C}-\mathrm{C}$ bond.
(ii) Compare the extents of enol content of the following compound in water and in hexane solvents. $\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{COOCH}_{2} \mathrm{CH}_{3}$
(d) (i) Draw an energy diagram for a one-step endergonic process. Label it with respect to the reactants, transition state, free energy of activation and standard free energy of reaction.
(ii) Find out the relationship (topicity) between H_{A} and H_{B} in the following compound.

3. Answer any one question:
(a) (i) What is meant by nucleophilicity? Arrange the following anions in order of increasing nucleophilicity in polar aprotic solvent. Give reason. $\mathrm{F}, \mathrm{Br}^{-}, \mathrm{Cl}^{-}, \mathrm{I}^{-}$
(ii) Draw one active and one meso isomer of $\mathrm{HOOC}(\mathrm{CHOH})_{3} \mathrm{COOH}$ in Fischer's Projection formula. Will the interchange of H and OH at $\mathrm{C}-3$ of the active isomer you have drawn lead to another stereoisomer?
(iii) Propose a mechanism for the following reaction that explains how this product is generated.

(iv) What is meant by atropisomerism?
(v) An alkane (Molecular Weight 72) formed only one monochloro substitution product. Suggest a structure for the alkane.
(b) (i) Trace the following interconversions and assign R / S configuration to each stereogenic centre. Show appropriate reagents, catalysis and solvents.
$(\mathrm{R})-2-$ Butanol \longrightarrow Tosylate $\xrightarrow[\text { acetone }]{\mathrm{Br}^{-}}$
(ii) Identify the product in the following reaction and justify your answer.

Or,

Predict the product(s) of the following reaction with plausible mechanism.

(iii) Write the enantiomeric forms of $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{CHCH}_{3}$. Give reason.
(iv) What is meant by 'protonsponge'? Give one example.

