B.Sc. 2nd Semester (Honours) Examination, 2021

CHEMISTRY

(Organic Chemistry-II)

Paper: SH/CHEM/202/C-4

Course ID: 21412

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

 $1 \times 5 = 5$

Full Marks: 25

(a) Why the following compound is very reluctant towards S_N1 and S_N2 reactions?

$$\bigcirc$$

- (b) Give one suitable example of a reaction which proceeds via E1cB mechanism.
- (c) Arrange the following compounds according to their increasing basicity.

$$N$$
 NEt₃ N

- (d) Draw the stable conformation of 2-chloro-1-propanol.
- (e) Account for the acidity difference.

- (f) Between *cis* and *trans* isomer of cyclohexane-1,2-dicarboxylic acid, which one is more acidic?
- (g) Give one example (structure) of proton sponge effect.

Please Turn Over

(h) Which one of the following compounds is resolvable?

2. Answer *any two* questions:

 $5 \times 2 = 10$

(a) 2+(2+1) = 5

(i) Offer a suitable explanation for the different percentage of enol content of the following two compounds

Compound	% of enol content
3-Hexanone	0.05
Cyclohexanone	1.18

(ii) Point out the differences between 'Resonance' and 'Tautomerization'. What is 'Valance Tautomerization'?

(b) 2+2+1=5

(i) Find the spatial relationship (Homotopic/Enantiotopic/diastereotopic) between H_a and H_b in the following compounds.

$$CI$$
 H_a
 H_b
 $COOH$
 H_b
 $COOH$

(ii) What is 'Buttressing Effect'?

(iii) Predict the absolute configuration (R_a/S_a) of the following compound.

HOOC'
$$NO_2$$
 COOH

(c) 3+2=5

(i) Explain the formation of differently oriented product of the following reaction.

$$Et_2N$$
 CI
 $NaOH, H_2O$
 HO
 NEt_2
 CI
 NBn_2
 $H_2O, NaHCO_3$
 Bn_2N
 OH

(ii) Provide an explanation for the observation that the pyrolytic elimination of 2-butyl acetate gives both Z and E-butene (in addition to 1-butene) even though the reaction is a stereospecific syn process.

1+1+1+1+1=5

Write structures for compounds A - E.

excess CH₃I
/ Na₂CO₃
A
$$A \xrightarrow{Ag_2O / H_2O} B \xrightarrow{\Delta} C$$
1. excess CH₃I
2. Ag₂O / H₂O
3. Δ

$$D + E$$

3. Answer *any one* question:

 $10 \times 1 = 10$

(a) (2+1)+(3+1)+3=10

- (i) Convert (-)-2-octanol to (+)-2-octanol. Potassium *tert*-butoxide is often used to promote E2 reaction at the expanse of $S_N 2$ reaction Explain.
- (ii) When naphthalene is treated with Conc. H₂SO₄ at 40 °C the main product is 1-derivative but at 140°C the main product is 2-derivative explain. What is 'Secondary Kinetic Isotopic Effect'?
- (iii) Predict the stereochemistry of the products (A and B) formed in each of the following reaction with suitable mechanism.

(b) 3+2+(1+4)=10

(i) C-3 in the dicarboxylic acid C is *prochirotopic* but not *prostereogenic* - Explain.

(ii) Designate H_a and H_b as Pro-R and Pro-S

(iii) What is called Butane-gauche interaction? Draw the Potential energy diagram of ethylene glycol for the rotation about C-C bond and label the maxima and minima with appropriate conformation. Compare the relative stabilities of conformations.