B.Sc. 2nd Semester (Honours) Examination, 2021 #### **CHEMISTRY** (Organic Chemistry-II) Paper: SH/CHEM/202/C-4 **Course ID: 21412** ## **Time: 1 Hour 15 Minutes** The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable. ### 1. Answer *any five* questions: $1 \times 5 = 5$ Full Marks: 25 (a) Why the following compound is very reluctant towards S_N1 and S_N2 reactions? $$\bigcirc$$ - (b) Give one suitable example of a reaction which proceeds via E1cB mechanism. - (c) Arrange the following compounds according to their increasing basicity. $$N$$ NEt₃ N - (d) Draw the stable conformation of 2-chloro-1-propanol. - (e) Account for the acidity difference. - (f) Between *cis* and *trans* isomer of cyclohexane-1,2-dicarboxylic acid, which one is more acidic? - (g) Give one example (structure) of proton sponge effect. #### **Please Turn Over** (h) Which one of the following compounds is resolvable? 2. Answer *any two* questions: $5 \times 2 = 10$ (a) 2+(2+1) = 5 (i) Offer a suitable explanation for the different percentage of enol content of the following two compounds | Compound | % of enol content | |-----------------|-------------------| | 3-Hexanone | 0.05 | | Cyclohexanone | 1.18 | (ii) Point out the differences between 'Resonance' and 'Tautomerization'. What is 'Valance Tautomerization'? (b) 2+2+1=5 (i) Find the spatial relationship (Homotopic/Enantiotopic/diastereotopic) between H_a and H_b in the following compounds. $$CI$$ H_a H_b $COOH$ H_b $COOH$ (ii) What is 'Buttressing Effect'? (iii) Predict the absolute configuration (R_a/S_a) of the following compound. HOOC' $$NO_2$$ COOH (c) 3+2=5 (i) Explain the formation of differently oriented product of the following reaction. $$Et_2N$$ CI $NaOH, H_2O$ HO NEt_2 CI NBn_2 $H_2O, NaHCO_3$ Bn_2N OH (ii) Provide an explanation for the observation that the pyrolytic elimination of 2-butyl acetate gives both Z and E-butene (in addition to 1-butene) even though the reaction is a stereospecific syn process. 1+1+1+1+1=5 Write structures for compounds A - E. excess CH₃I / Na₂CO₃ A $$A \xrightarrow{Ag_2O / H_2O} B \xrightarrow{\Delta} C$$ 1. excess CH₃I 2. Ag₂O / H₂O 3. Δ $$D + E$$ 3. Answer *any one* question: $10 \times 1 = 10$ (a) (2+1)+(3+1)+3=10 - (i) Convert (-)-2-octanol to (+)-2-octanol. Potassium *tert*-butoxide is often used to promote E2 reaction at the expanse of $S_N 2$ reaction Explain. - (ii) When naphthalene is treated with Conc. H₂SO₄ at 40 °C the main product is 1-derivative but at 140°C the main product is 2-derivative explain. What is 'Secondary Kinetic Isotopic Effect'? - (iii) Predict the stereochemistry of the products (A and B) formed in each of the following reaction with suitable mechanism. (b) 3+2+(1+4)=10 (i) C-3 in the dicarboxylic acid C is *prochirotopic* but not *prostereogenic* - Explain. (ii) Designate H_a and H_b as Pro-R and Pro-S (iii) What is called Butane-gauche interaction? Draw the Potential energy diagram of ethylene glycol for the rotation about C-C bond and label the maxima and minima with appropriate conformation. Compare the relative stabilities of conformations.