SH-II/CHE/201/C-3/19

B.Sc. 2nd Semester (Honours) Examination, 2019 CHEMISTRY (Inorganic Chemistry-I)

Paper : SH/CHE/201/C3 Course ID : 21411

Time: 1 Hour 15 Minutes

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

- **1.** Answer *any five* questions:
 - (a) Calculate the number of unpaired electrons in Cr^{2+} .
 - (b) Work out the ground state term symbol of Ni(II) ion.
 - (c) Why is the electron affinity value of Cl greater than that of F?
 - (d) Specify the number of radial and angular nodes present in 3p and 3d orbitals.
 - (e) Cite one example of a super acid.
 - (f) What information do we get from Latimer's diagram?
 - (g) Furnish one example of secondary periodicity.
 - (h) Work out the oxidation state of sulfur in $K_2S_2O_8$.
- 2. Answer *any two* questions:
 - (a) (i) The first Bohr radius of hydrogen atom is 0.529\AA ; find the same for He⁺ ion.
 - (ii) Enunciate de Broglie's concept on wave-particle duality. Derive Bohr's quantum restriction from de Broglie's equation. 2+3=5
 - (b) (i) State Slater's rules and apply those to calculate the screening constant and effective nuclear change experienced by a *d* electron of copper (II) ion.
 - (ii) Of nitrogen and oxygen atoms which one has higher ionisation potential and why? 3+2=5
 - (c) (i) Define formal potential. On this context explain the statement that a neutral solution of $K_3[Fe(CN)_6]$ cannot oxidise iodide to iodine but it can do so in presence of Zn^{2+} . [Given: $E^0_{Fe(CN)_6^{3-}/Fe(CN)_6^{4-}} = 0 \cdot 36V$; $E^0_{I_2/2I^-} = 0 \cdot 54V$]
 - (ii) Enumerate the potential at the equivalence point in the titration of 25mL 0·1M Fe²⁺ by 0·5M KMnO₄. [Given: $E_{Fe^{3+}/Fe^{2+}}^0 = 0.77V$, $E_{MnO_4,H^+/Mn^{2+}}^0 = 1.51V$] 3+2=5

21411/13089

Please Turn Over

13089-B.Sc.-II-Chem-201C-3-19-J.docx

Full Marks: 25

 $1 \times 5 = 5$

5×2=10

SH-II/CHE/201/C-3/19

- (d) (i) Point out the main reason why Al and Ni are, respectively found as oxide and sulphide in nature.
 - (ii) Calculate the change of pH when 1 mL 0·1M HCl is added to 1L of a buffer solution containing 0·1M CH₃COOH and 0·1M CH₃COONa. (pKa of CH₃COOH=4·74) 2+3=5

10×1=10

- 3. Answer *any one* question:
 - (a) (i) Relate the Rydberg constant of H-atom and He^{+} ion.
 - (ii) Write down the Schrödinger's wave equation indicating the terms involved.
 - (iii) Calculate the radius of Na⁺ and \overline{F} ions from Pauling's concept of univalent radii. Equilibrium inter-ionic distance in NaF crystal is 2.31Å.
 - (iv) HI is a stronger acid than HCl, while HClO₄ is stronger acid then HIO₄. Explain. 2+2+3+3=10
 - (b) (i) Interpret comproportionation and disproportionation reactions on the basis of Frost diagram.
 - (ii) NH₄HF₂ fulfils two requisites in the iodometric estimation of copper in presence of ion. — Explain. [Given: $E_{I_2/2I^-}^0 = 0.54V$, $E_{Cu^{2+}/Cu}^0 = 0.17V$, $E_{Fe^{3+}/Fe^{2+}}^0 = 0.77V$]
 - (iii) What is common ion effect? State with equation(s) what happens when H_2S gas is passed through an acidified aqueous solutions of CuSO₄ and ZnSO₄.
 - (iv) The solubility of CaF₂ in water at 18° C is $2 \cdot 0 \times 10^{-4}$ mol L⁻¹. Calculate the solubility product of CaF₂. 2+3+3+2=10