B.Sc. 2nd Semester (Honours) Examination, 2021

CHEMISTRY

(Inorganic Chemistry-I)

Paper: SH/CHE/201/C3

Course ID: 21411

Time: 1 Hour 15 Minutes Full Marks: 25

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer *any five* questions:

 $1\times5=5$

- (a) Why Niobium and Tantalum have almost same atomic radii?
- (b) Give the ground state electronic configuration of Ti and Ti⁺³ ion.
- (c) Why (H₃Si)₃N is weaker base than (H₃C)₃N?
- (d) Find out the conjugate acid base pair(s) of HCO₃⁻ ion.
- (e) Work out ground state term symbol of Fe³⁺ ion.
- (f) Point out the criterion of a Bronsted base.
- (g) Express one inorganic disproportionation reaction.
- (h) Which one has higher electron affinity? O or F. Explain.
- **2.** Answer *any two* questions:

 $5 \times 2 = 10$

- (a) (i) From Bohr's theory compare the frequencies of the radiation emitted from nth orbit of H-atom with those emitted by He⁺, and Be³⁺ ions.
 - (ii) What would be the wavelength of emission spectrum when the electron jumps from the level with n = 2 to ground state of He⁺? (h = 6.6×10^{-27} erg-sec, m_e = 9.1×10^{-28} g, 1 erg = 6.24×10^{11} eV).
- (b) (i) Calculate Pauling's electronegativity of hydrogen atom from the following data: Bond energies (KJ/mole): H_2 (458), F_2 (155), HF (565) and Pauling's electronegativity of F = 4.0
 - (ii) Find the smallest and largest sized ions from the following: H⁻, F⁻, Cl⁻, Br⁻. Give reason in support of your answer.

Please Turn Over

- (c) (i) List the bases in order of their increasing proton affinities: HS⁻, F⁻, I⁻, NH₂⁻.
 - (ii) Identify the Lewis acid and base in the reaction, $I^- + I_2 \rightarrow I_3^-$. Justify your answer.

2+3=5

- (d) (i) Write down the composition of Zimmermann Reinhardt solution. Explain why this solution is used during redox titration of Fe(II) ion by KMnO₄ solution in HCl medium.
 - (ii) Calculate the E_o value of $MO_2^+\!/M^{4+}$ couple in 1M acid medium from the following diagram

4+1=5

3. Answer *any one* question:

 $10 \times 1 = 10$

- (a) (i) Explain with example the exchange energy of electrons. Estimate the exchange energy of 2p electrons of fluorine atom.
 - (ii) What is the shortest Wave length in the absorption spectrum of deuterium? $(R=109737\,\text{cm}^{-1})$
 - (iii) "Addition of phosphoric acid is essential in the titration of ferrous ion with dichromate". -Comment. [Given, E^0 for $Cr_2O_7^{2-}/Cr(III) = 1.33$ V; $Fe^{3+}/Fe^{2+} = 0.77$ V: In(ox)/In(red) = 0.76 V]
 - (iv) Classify the following species into acids and bases and write their conjugate bases and conjugate acids: HSO₄-, CH₃OH. 3+2+3+2=10
- (b) (i) During ionization of Vanadium, the 4s electron comes out first. Establish it using Slater's rules.
 - (ii) Explain why BH₃F⁻ and BF₃H⁻ react to from BF₄⁻ and BH₄⁻?
 - (iii) Using electronic theory classify the following into acids, bases or neutral species: CH₂=CH₂, H₃O⁺, HCl, and Me₂SO.
 - (iv) Define comproportionation reaction with example. 4+2+2=10