B.Sc. Semester I (Honours) Examination, 2018-19
 PHYSICS

Course ID : 12411

Course Code : SHPHS-101C-1(T)

Course Title : Mathematical Physics I

Time: 1 Hour 15 Minutes
Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Section-I

1. Answer any five questions of the following:
(a) Find a vector perpendicular to both $\vec{A}=2 \hat{\imath}-\hat{\jmath}-4 \hat{k}$ and $\vec{B}=3 \hat{\imath}-\hat{\jmath}-\hat{k}$.
(b) Sketch $\theta=$ Constant surface in spherical polar co-ordinate system.
(c) If $\vec{E}=-\vec{\nabla} \varphi, \varphi$ is the scalar function, then find $\oint_{C} \vec{E} \cdot \overrightarrow{d r}$ if C is any simple closed curve.
(d) Find the value of $\beta\left(\frac{1}{2}, \frac{3}{2}\right)$.
(e) Determine the integrating factor for the differential equation $y d x-x d y=0$.
(f) State the condition for which $x=x_{0}$ is a regular singular point of the differential equation $P_{1}(x) \frac{d^{2} y}{d x^{2}}+P_{2}(x) \frac{d y}{d x}+P_{3}(x) y=0$.
(g) By using Rodrigue's formula for Legendre's polynomial, show that $P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right)$.
(h) Form the differential equation by eliminating the arbitrary function f and g from $z=f(x+a t)+g(x-a t)$.

Section-II

2. Answer any two questions of the following:
(a) For a solenoidal vector \vec{A}, show that $\vec{\nabla} \times[\vec{\nabla} \times\{\vec{\nabla} \times(\vec{\nabla} \times \vec{A})\}]=\nabla^{4} \vec{A}$.
(b) Prove that $\vec{\nabla} \varphi$ points in the direction of maximum rate of increase of the scalar point function $\varphi(x, y, z)$ $3+2=5$
3. Represent the vector $\vec{A}=Z \hat{\imath}-2 x \hat{\jmath}+y \vec{k}$ in cylindrical co-ordinate system. 5
4. Solve: $\left(\frac{d^{2} y}{d x^{2}}+4 y\right)=e^{x} \sin ^{2} x$.
5. (a) Prove that $P_{n}^{\prime}(x)-x P_{n-1}^{\prime}(x)=n P_{n-1}(x)$
(b) Prove that $\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}$.

Section-III

Answer any one question.

6. (a) Write down the two-dimensional Laplace's equation in polar co-ordinate.
(b) Find the general solution of the above equation by the method of separation of variables.
(c) Prove that $\beta(m, m) \times \beta\left(m+\frac{1}{2}, m+\frac{1}{2}\right)=\frac{\pi}{m}(2)^{1-4 m}$.
7. (a) Evaluate $\int_{C} \overrightarrow{\mathrm{~A}} \cdot \overrightarrow{d r}$ along the curve $x^{2}+y^{2}=1, z=1$ in the positive direction from $(0,1,1)$ to $(1,0,1)$ if $\vec{A}=(y z+2 x) \hat{\imath}+x z \hat{\jmath}+(x y+2 z) \hat{k}$.
(b) Find the acute angle between the surfaces $x y^{2} z=3 x+z^{2}$ and $3 x^{2}-y^{2}+2 z=1$. at the point (1,-2, 1).
(c) Evaluate: div $\left(\frac{\vec{r}}{r^{3}}\right)$
