B.B.A. 1st Semester (Honours) Examination, 2019-20 (CBCS)

BACHELOR OF BUSINESS ADMINISTRATION
Course ID : 13412
Course Code : CC-02

Course Title: Business Mathematics

Time: 3 Hours
Full Marks: 80
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

Group A

1. Answer all the questions.
(i) If $f(x)=x+|x-5|$, find $f(-2)$.
(a) 0
(b) 5
(c) 7
(d) 2
(e) None of these
(ii) The value of ${ }^{12} \mathrm{P}_{4}$ is
(a) 1188
(b) 1880
(c) 11880
(d) 12880
(e) None of these
(iii) The sum of the G. P. series of
$1+2+4+8+\ldots+64$ is
(a) 63
(b) 255
(c) 127
(d) 227
(e) None of these
(iv) The value of $\left|\begin{array}{ccc}15 & -3 & 21 \\ 5 & -1 & 7 \\ 2 & -3 & 8\end{array}\right|$ is
(a) 273
(b) 0
(c) -273
(d) 275
(e) None of these
(v) The value of $\log _{2}\left[\log _{2}\left\{\log _{3}\left(\log _{5} 125^{3}\right)\right\}\right]$ is
(a) 0
(b) 1
(c) -1
(d) 2
(e) None of these
(vi) The value of $\lim _{y \rightarrow-3} \frac{y^{3}-5 y+3}{y^{2}+1}$ is
(a) 0
(b) $\frac{9}{10}$
(c) $-\frac{10}{9}$
(d) $-\frac{9}{10}$
(e) None of these
(vii) Find $\frac{d}{d x}\left(x^{\frac{2}{3}}\right)$.
(a) $\frac{1}{3} x^{-\frac{2}{3}}$
(b) $\frac{1}{3} x^{\frac{1}{3}}$
(c) $\frac{2}{3} x^{\frac{2}{3}}$
(d) $\frac{2}{3} x^{-\frac{1}{3}}$
(e) None of these
(viii) Find $\int_{0}^{1} \frac{1+x^{3}}{1+x} d x$.
(a) 1
(b) 0
(c) $\frac{11}{6}$
(d) $\frac{6}{11}$
(e) None of these
(ix) The distance between the points $(-2,4)$ and $(4,-5)$ is
(a) 0 units
(b) $\sqrt{116}$ units
(c) $\sqrt{117}$ units
(d) 117 units
(e) None of these
(x) The equation $y^{2}+4 x+6 y+9=0$ is
(a) Circle
(b) Parabola
(c) Hyperbola
(d) Ellipse
(e) None of these

Group B

2. Answer any ten questions:
(a) If ${ }^{25} \mathrm{C}_{\mathrm{P}}={ }^{25} \mathrm{C}_{\mathrm{P}+2}$, find ${ }^{\mathrm{P}} \mathrm{C}_{5}$.
(b) $A=\left[\begin{array}{cc}-1 & 5 \\ 5 & 0\end{array}\right]$ and $B=\left[\begin{array}{cc}11 & -6 \\ -2 & 4\end{array}\right]$ then find $3 A+5 B$.
(c) Solve: $2^{2 x+1}+2^{9}=2^{10}$
(d) $\left(5^{5}+0 \cdot 01\right)^{2}+\left(5^{5}-0 \cdot 01\right)^{2}=5^{x}$, then $x=?$
(e) Simplify: $\sqrt[3]{x^{4} \sqrt{x^{-5} \sqrt{x^{6}}}}$
(f) Find $\lim _{x \rightarrow 2} \frac{\sqrt{1+2 x}-\sqrt{1+x^{2}}}{2-x}$.
(g) Find $\frac{d y}{d x}$ if $y=(\sqrt{x}+3)\left(x^{2}+6\right)$.
(h) Verify that the points $(3,-4),(1,2)$ and $(2,-1)$ are collinear or not.
(i) Find the logarithm of 0.000001 to the base 0.01 .
(j) Find $\int_{0}^{\pi / 2}\left(3 \theta^{2}+2\right)^{3} d \theta$.
(k) Define 'Null matrix and 'Diagonal matrix'.
(1) If $x^{a}=y^{b}=z^{c}$, and $x y z=1$, find the value of $\frac{1}{a}+\frac{1}{b}+\frac{1}{c}$.
(m) Find the slope of the line $5 x-3 y+7=0$.
(n) If $\frac{\log P}{Q-R}=\frac{\log Q}{R-P}=\frac{\log R}{P-Q}$, then show that $P^{P} Q^{Q} R^{R}=1$.
(o) If α and β be the roots of $x^{2}-\left(1+k^{2}\right) x+\frac{1}{2}\left(1+k^{2}+k^{4}\right)=0$, then show that $\alpha^{2}+\beta^{2}=k^{2}$.

Group C

3. Answer any four questions:
$5 \times 4=20$
(a) Show that

$$
\left|\begin{array}{ccc}
a & b & c \\
a^{2} & b^{2} & c^{2} \\
b+c & c+a & a+b
\end{array}\right|=(a-b)(b-c)(c-a)(a+b+c)
$$

(b) Solve the system of the equation by Matrix method:

$$
\begin{aligned}
& x+2 y+z=7 \\
& x+3 z=11 \\
& 2 x-3 y=1
\end{aligned}
$$

(c) Show that

$$
(y z)^{\log \frac{y}{x}} \times(z x)^{\log \frac{z}{x}} \times(x y)^{\log \frac{x}{y}}=1 .
$$

(d) Find the equation of the line having the points $(1,2)$ and $(-2,0)$. Are the points $(-5,2)$ and $(2,-5)$ lie on that line?
(e) If one root of $x^{2}+r x-s=0$ is square of the other root show that $r^{3}+s^{2}+3 s r-s=0$.
(f) If m th term of a G.P. is n and nth term is m, find $(2 m-n)$ th term of the G.P.

Group D

4. Answer any three questions:
(a) (i) If 5th term of an A.P. is 30 and 12 th term is 65 , find the sum of first 20 terms.
(ii) Find the sum to n terms of the series

$$
4+44+444+\ldots
$$

(b) (i) If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, then show that $A^{2}=5 A+2 I$ and hence find A^{-1}.
(ii) Solve: $\left|\begin{array}{ccc}x-2 & 2 x-3 & 3 x-4 \\ x-4 & 2 x-9 & 3 x-16 \\ x-8 & 2 x-27 & 3 x-64\end{array}\right|=0$
(c) (i) Evaluate: $\int \frac{x+1}{\sqrt{4+8 x-5 x^{2}}} d x$
(ii) If $x=a\left(t+\frac{1}{t}\right)$ and $y=a\left(t-\frac{1}{t}\right)$, find $\frac{d^{2} y}{d x^{2}}$.
(d) (i) If ${ }^{2 n+1} P_{n-1}:{ }^{2 n-1} P_{n}=3: 5$, then find the value of n.
(ii) If α and β be two roots of $x^{2}+3 x+4=0$, find the equation whose roots are $(\alpha+\beta)^{2}$ and $(\alpha-\beta)^{2}$.
(e) (i) If $4 x-3 y=1,3 x-4 y+1=0$ and $k x-7 y+3=0$ are concurrent, find the values of k.
(ii) Find the centre and radius of the circle $3\left(x^{2}+y^{2}\right)=5 x+6 y-4$.
(f) (i) If $p q r=1$, then show that

$$
\frac{1}{1+p+q^{-1}}+\frac{1}{1+q+r^{-1}}+\frac{1}{1+r+p^{-1}}=1 .
$$

(ii) Solve: $2 \log _{2} \log _{2} x+\log _{\frac{1}{2}}(2 \sqrt{2} x)=1$

