B.Sc. 1st Semester (Honours) Examination, 2019-20 CHEMISTRY

Course ID : 11412

Course Code : SHCHEM/102/C-2

Course Title: Physical Chemistry-I

Time: 1 Hour 15 Minutes

Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five of the following:
(a) 'Pdv-Vdp' is not an exact differential— Justify.
(b) Show that $\left[\frac{\partial}{\partial T}\left(\frac{G}{T}\right)_{P}\right]=-\frac{H}{T^{2}}$.
(c) A zero order reaction cannot be single step reaction - Explain.
(d) What is Clausius inequality?
(e) Plot logk vs. pH for acid-base catalysed reaction.
(f) Plot the Carnot cycle in a S-T diagram.
(g) What are the unit of rate constants for a first order and for a zero order reaction?
(h) State one difference between Joule-Thomson cooling and adiabatic cooling.
2. Answer any two of the following:
(a) (i) What is the importance of using the r.m.s. speed rather than the average speed for gas molecules?
(ii) Find out the fraction of molecule having kinetic energy in excess of ϵ_{0} in a plane.
(iii) Why the factor ${ }^{‘} \frac{1}{2} n$ ' is used for bimolecular collisions of the gas molecules? $\quad 2+2+1=5$
(b) (i) What is Line-weaver Burke plot for the enzyme catalysis reaction? Plot it.
(ii) Obtain the integrated form of rate equation for a 2 nd order reaction $\mathrm{A}+\mathrm{B} \rightarrow$ pdts, where the initial concentrations. of A and B are different. What would happen if conc. A and B are not different from each other $[b \rightarrow a$ and given $\ln (1+x)=x$ as $x \rightarrow 0]$. $2+3=5$
(c) (i) A Carnot engine working between $0^{\circ} \mathrm{C}$ and $100^{\circ} \mathrm{C}$ has taken up 840 Joule from high temperature reservior. Calculate the work done and efficiency of the engine.
(ii) Prove that the thermodynamic equation of state $C_{P}-C_{V}=T\left(\frac{\partial V}{\partial T}\right)_{P}\left(\frac{\partial P}{\partial T}\right)_{V}$ and also show that $\left(\frac{\partial P}{\partial T}\right)_{P}=\frac{\alpha}{\beta}$, where α and β have their usual meaning.
(d) (i) What do you mean by the turn over number of an enzyme?
(ii) Show that $-\Delta \mathrm{A}_{\mathrm{T}}=\mathrm{W}_{\text {Toatl }}$, where $\mathrm{A}=$ Work function.
(iii) Show that at low pressure Dietrici equation leads to van der Waal's equation. $1+2+2=5$
3. Answer any one of the following:
(a) (i) Show that for a first order reaction the time required for 99.9% completion is three times of that required for the completion of 90% of the reaction.
(ii) Transform the Maxwell's distribution of velocities into the distribution of kinetic energy for gaseous molecules.
(iii) Starting from $\mu_{J T}=\left(\frac{\partial T}{\partial P}\right)_{H}$, where the symbols have their usual meanings, show that for ideal gas, $\mu_{J T}=0$.
(iv) The critical temperature and pressure of CO_{2} are $31^{\circ} \mathrm{C}$ and 73 atm respectively. Assuming that CO_{2} obeys van der Waal's equation, estimate the diameter of CO_{2} molecule.
(b) (i) Prove that, $\mathrm{W}_{\text {adia }}=\frac{P_{1} V_{1}}{v-1}\left[1-\left(\frac{V_{1}}{V_{2}}\right)^{v-1}\right]$ where terms are their usual meanings.
(ii) Derive the Kinetics of Unimolecular reactions (Lindemann Scheme).
(iii) Comment upon the following:

Order of a reaction cannot be predicted from its equation.
(iv) Show that for an ideal gas, $\left(\frac{\partial U}{\partial V}\right)_{T}=0$.
(v) Write down the value of Z_{c} for a van dar Wal's gas.
$2+3+2+2+1=10$

