B.Sc. Semester I (Honours) Examination, 2018-19 CHEMISTRY

Course ID : 11412

Course Code : SHCHE/102/C-2(T)

Course Title: Physical Chemistry I

Time: 1 Hour 15 Minutes

Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Draw Andrew's isotherms for CO_{2} at $\mathrm{T}>\mathrm{T}_{\mathrm{c}}$ and $\mathrm{T}<\mathrm{T}_{\mathrm{c}}$.
(b) Write the relation between Boyle temperature and Inversion temperature of a gas.
(c) State the spontaneity criteria for an isolated system in terms of entropy.
(d) At $27^{\circ} \mathrm{C}$ for equal volume of $\mathrm{N}_{2}, \mathrm{O}_{2}$ and CO_{2}, which one has the maximum average velocity?
(e) For two 1st order reactions with rate constants k_{2} and $\mathrm{k}_{1}\left(\mathrm{k}_{2}>\mathrm{k}_{1}\right)$, plot concentration of reactant vs. time in a single graph.
(f) How is the first law of thermodynamics applicable in Hess's law?
(g) 'Arrhenius A factor always have the same unit as the rate constant' - Comment.
(h) Whether Joule-Thomson expansion is a reversible or irreversible process?
2. Answer any two of the following:
(a) (i) Establish the relation between mean free path of the gas molecules with T and P .
(ii) Calculate the root mean square deviation for O_{2} at $27^{\circ} \mathrm{C}$.
(b) (i) Deduce the rate law for the following reaction mechanism:

$$
\begin{array}{r}
\mathrm{A}_{2} \underset{\mathrm{k}_{-1}}{\stackrel{\mathrm{k}_{1}}{ }} 2 \mathrm{~A} \text { (fast) } \\
\mathrm{A}+\mathrm{B} \xrightarrow{\mathrm{k}_{2}} \mathrm{P} \text { (slow) }
\end{array}
$$

(ii) Prove that for an ideal gas $\left(\frac{\partial H}{\partial V}\right)_{T}=0$.
(iii) State the standard state for Iodine.
(c) (i) The heat of neutralization of HCN by NaOH is 2900 Cal . Calculate the heat of ionization of 1 mole of HCN ; given that heat of reaction of $\mathrm{H}^{+}+\mathrm{OH}^{-}=\mathrm{H}_{2} \mathrm{O}$ is 13800 Cal .
(ii) The rate constant of a reaction is given by $\ln k=A-\frac{B}{T}+c \ln T$ where A, B, C are constants. Find the value of Activation energy for the reaction.
(iii) Find the dimension of reaction rate.
(d) (i) Transform van der Waal's equation of state into cubic form. Plot van der Waal's equation in a P vs. V diagram for a fixed temperature.
$2+1=3$
(ii) Define turn-over number. 2
3. Answer any one question:
(a) (i) Show the equivalence of Clausius and Planck-Kelvin statement.
(ii) Consider the parallel reaction

Here both the reactions are of 1 st order and $k_{1}=3 k_{2}$.
If 60% decomposition of A takes place in 20 minutes find k_{1} and k_{2}.
(iii) Transform 3-dimensional Maxwell's speed distribution into kinetic energy distribution. 3
(b) (i) Write the thermodynamic equation of state involving Helmhlotz free energy. Derive the corresponding Maxwell's relation from that equation.
$1+2=3$
(ii) Calculate the average energy of $\mathrm{N}_{2} \mathrm{O}$ molecule using Equipartition Principle at high temperature.
(iii) Convert van der Waal's equation of state into Virial form. 2
(iv) Find the $t_{1 / 2}$ of a zero order reaction.

B.Sc. Semester I (Honours) Examination, 2018-19

CHEMISTRY

Course ID : 11414
Course Code : SHCHE-103GE-1(T)
Course Title: A.S., C.P., A\&B, R.R., G.O. \& A.H.
Time: 1 Hour 15 Minutes
Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

> দক্ষিণ প্রান্তস্থ সংখাঞ্গলি প্রশ্নের পূণমানের নির্দেশক। পরীক্থাদ্থীদ যথাসম্তব নিজের ভাযায় উত্তর দিতে হবে।

1. Answer any five questions: যে কোনো পাচটি প্রশ্নের সংক্ষিপ্ত উত্তর দাও :
(a) Compare $\mathrm{C}-\mathrm{H}$ bond length of $\mathrm{C}_{2} \mathrm{H}_{2}$ and $\mathrm{C}_{2} \mathrm{H}_{4}$.
$\mathrm{C}_{2} \mathrm{H}_{2}$ এবং $\mathrm{C}_{2} \mathrm{H}_{4}$ ব্যেগের $\mathrm{C}-\mathrm{H}$ বন্ধনের দৈর্য্য তুলনা করো।
(b) NH_{3} is Pyramidal but BCl_{3} is planar. -Explain.
NH_{3} পিরামিড আকৃতির কিন্তু BCl_{3} সমতলীয়।—ব্যাখ্যা করো।
(c) State the oxidation numbers of the two chlorine atoms in $\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}$.
$\mathrm{Ca}(\mathrm{OCl}) \mathrm{Cl}$ বৌগে ক্লোরিন পরমাণু দুটির জারণ সংখ্যা নির্দেশ করো।
(d) What is 'Asymmetric C-atom'?

অপ্রতিসম C- পরমাণু বলতত কী বোরো?
(e) Write down the structure of (R) Lactic Acid in Fischer Projection formula.

ফিশ|র প্রোজেকশন ফর্মুলাতে (R) ল্যাকটিক অ্যাসিডের গঠন লেখো।
(f) "Electron affinities of noble gases are poor".-Why?

নিষ্ক্রিয় গ্যাসসমূহের ইলেকট্ট্রন আসক্তি নগন্য কেন?
(g) Write down the electronic configuration of Fe^{3+} ion.
Fe^{3+} आয়ন-এর ইলেকট্রুন বিন্যাস লেখো।
(h) Describe Pauli exclusion principle.

পাউলির অপবর্জন নীতিটি বিবৃত করো।
2. Answer any two questions:

যে কোনো দুটি প্রশ্নের উত্তর দাও :
(a) Define ionisation potential. Why is second ionisation potential value of an element greater than the first?
$2+3=5$
আয়নয়ন বিভবের সংজ্ঞা দাও। কোনো মৌলের দ্বিতীয় আয়নয়ন বিভব প্রথম আয়নয়ন বিভব অপেক্ষা বেশী কেন ?
(b) (i) Draw all possible stereo isomers of Tartaric acid and mention their stereochemical relationship.
টারটারিক অ্যাসিডের সম্ভাব্য ত্রিমাত্রিক সমাবয়বগুলির গঠন লেখো ও এদের মধ্যে ত্রিমাত্রিক সম্পর্কগুলি উল্লেখ করো।
(ii) Designate the following compounds as E or Z .

নিম্নলিখিত যৌগগুলির ‘E’ এবং ‘Z’ নামকরণ করো।

(c) Write notes on the following (any two):

যে কোনো দুটি বিষয়ের উপর টীকা লেখো :
(i) HSAB theory
(HSAB নীতি)
(ii) d-Block element
(d-ব্লক মৌল)
(iii) Hund's rule
(হুন্ডের সূত্র)
(iv) Buffer solution
(বাফার দ্রবণ)
(d) (i) Why nitromethane is more acidic than methane?

মিথেন অপেক্ষা নাইট্রোমিথেন অধিক আম্লিক কেন?
(ii) Balance the following chemical equation by ion electron method:

নিম্নলিখিত সমীকরণটির আয়ন ইলেকট্রন পদ্ধতিতে সমতা বিধান করোঃ

$$
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{KI} \longrightarrow \mathrm{I}_{2}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

3. Answer any one question:
$10 \times 1=10$
যে কোনো একটি প্রশ্নের উত্তর দাও:
(a) (i) What led Sommerfield to modify Bohr's theory? What was his modifications?

সমারফিল্ড বোর-তত্তুকে সংশোধন করেছিলেন কেন? তাঁর সংশোধনীগুলি কী কী?
(ii) Describe the change of ionization potential along a period and down a group in the periodic table.
পর্यায় সারণীতে পর্यায় ও শ্রেণী বরাবর আয়নায়ন বিভবের পরিবর্তন সংক্ষেপে বর্ণনা করো।
(iii) Indicating reason arrange $\mathrm{HCl}, \mathrm{HF}, \mathrm{HBr}$ and HI in order of their decreasing acidity.
$\mathrm{HCl}, \mathrm{HF}, \mathrm{HBr}$ and HI -অ্যাসিডগুলির আল্লিকতার ক্রম লেখো এবং কারণ ব্যাখ্যা করো।
(b) Carry out the following conversions (any five):
$2 \times 5=10$
নিম্নলিথিত পরিবর্তনগুলি সম্পন্ন করো (যে কোনো পাঁচটিঃঃ
(i) Acetylene to Acetone

অ্যাসিটিলিন থেকে অ্যাসিটোন
(ii) Propene to 1-Propanol

প্রোপিন থেকে 1-প্রোপানল
(iii) Ethylene to Acetylene

ইথিলিন থেকে অ্যাসিটিলিন
(iv) 1-Butene to 2-Butene

1-বিউটিন থেকে 2-বিউটিন
(v) Propene to 1-Bromo propane

প্রোপিন থেকে 1-ব্রোম্মো প্রোপেন
(vi) Acetylene to Propyne অ্যাসিটিলিন থেকে প্রোপাইন
(vii) Ethane to n-Butane ইথথে থেকে n-বিউটেন

B．Sc．Semester I（General）Examination，2018－19

CHEMISTRY

Course ID ： 11418

Course Code ：SPCHE－101－C－1A（T）

Course Title：F．O．C \＆A．H．，A．S．，C．P．，A \＆B，R．R．
Time： 1 Hour 15 Minutes

The figures in the margin indicate full marks．
Candidates are required to give their answers in their own words as far as practicable．

দক্ষিণ প্রান্তস্থ সংখ্যাঞ্লি প্রশ্নের পূণমানের নিদ্রেশক। পরীক্ষার্থীদের যথাসম্তব নিজের ভাযায় উত্তর দিতে হবে।

1．Answer any five questions：
যে কোনো পাঁটটির উত্তর দাও ：
（a）Write down the electronic configuration of Co^{2+} ．
Co^{2+} आয়ন্নের ইলেকট্র্রন বিন্যাসগুলি লেখো।
（b）Compare the acidity of benzoic acid and p－nitrobenzoic acid．
বেনজোয়িক অ্যাসিড ও প্যারা নইট্রোবেনজোয়িক অ্যাসিডের অম্লর্বের তুলনা করো।
（c）Why the ionisation potential of Li^{+}is higher than He ？
$\mathrm{Li}^{+}-এ র$ आয়নীভবন বিভব He－এর তুলনায় বেশি কেন ？
（d）What are the conjugate acid and base of HPO_{4}^{2-} ？ HPO_{4}^{2-} आয়ন্নের অনুবন্ধী অ্যাসিড ও অনুবন্ধী ক্ষারক লেখো।
（e）Which one is more active towards $\mathrm{S}_{\mathrm{N}} 1$ reaction and why？$-\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
S_{N} বিক্রিয়ায় কে小টি বেশি সক্রি⿰亻刀 এবং কেন ？－ $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl}$ এবং $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$
（f）What is the oxidation number of＇ S ＇in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ ？
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ তে ‘S＇এর জারণ সংখ্যা কত？
（g）Explain，why the electron affinity of Cl is higher than that of F ？ $\mathrm{Cl}-এ র$ ইলেকক্ট্রন আসক্তি F অপেক্ষা বেশি কেন？
（h）$\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}$ is less acidic than $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$－explain． $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}-এ$ এ তুলনায় $\left[\mathrm{Co}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ বেশি অম্লিক — ব্যাখ্যা করো।
2. Answer any two questions:

यে কোনো দুটির উত্তর দাও :
(a) (i) Which one is more stable and why?

কোনটি বেশি স্থায়ী এবং কেন ?
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CH}_{3}$ এবং

(ii) Trifluoroacetic acid behaves like $\mathrm{H}_{2} \mathrm{SO}_{4}$ - explain.

ট্রাই্্লুরোঅ্যালেটিক অ্যাসিড, $\mathrm{H}_{2} \mathrm{SO}_{4}$-এর মরো আচরণ করে- ব্যাখ্যা করো।
(iii) What is the hybridization of ' C ' in ${ }^{\oplus} \mathrm{CH}_{3}$?
${ }^{\oplus} \mathrm{CH}_{3}-$ - কার্বনের সংকরায়ণ কী?
(b) Give an example of enantiomer and diastereomer. Write a short note on tautomerism. Write down the Hund's rule.

Fill in the gap: $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \longrightarrow \mathrm{H}_{2} \mathrm{C}-\mathrm{CH}_{2}$
$2+2+1=5$
একটি করে enantiomer এবং diastereomer-এর উদাহরণ দাও। হুন্ডের সূত্রটি ব্যাখ্যা করো।
শূন্যস্থান পূরণ করোঃ $\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2} \longrightarrow ? \mathrm{H}_{2} \mathrm{C}-{ }_{\mathrm{O}} \mathrm{CH}_{2}$
(c) Write down the properties of d-block elements. What do you mean by diagonal relationship? $3+2=5$
d -ब্লক মৌলের বৈশিষ্ট্যগুলি লেখ্যে। কৌিিক সম্পর্ক বলতে কী বোবো?
(d) Arrange in increasing acidity order of the followings:
$\mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{4}$
Cis-1, 2-dichloroethane is more polar than trans-1,2-dichloroethane- explain.
অম্লিকতার ক্রবমর্ধমান ক্রম অনুসারে সাজাও :
$\mathrm{H}_{3} \mathrm{PO}_{3}, \mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{H}_{3} \mathrm{PO}_{4}$
ট্রাল্-1, 2-ডাইক্লোরোইথেন অপেক্ষা সিস্-1, 2-ডাইক্লোরোইথথে অণু বেশি ধ্রুবীয় — ব্যাখ্যা করো।
3. Answer any one question:

যে কোনো একটির দাও :
(a) (i) Write down the products $[\mathrm{A}]$ and $[\mathrm{B}]$ in the reaction:

নিম্নলিখিত পরিবর্তনের সন্ভাব্য উৎপন্ন পদার্থগলি [A] এবং [B] কী?

(ii) What is cracking? Write short note on meso compound. Arrange the increasing order of basisity of the following: $\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$ $2+(2+3+3)=10$ ক্র্যাকিং কী? টীকা লেঢো- মেসো বৌগ। ক্শারকীয়তার ক্রমবর্ধমান ক্রম অনুসারে সাজাও: $\mathrm{CH}_{3} \mathrm{NH}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}, \mathrm{CH}_{3} \mathrm{CN}$
(b) Calculate the radius of 2nd Bohr orbit of a H -atom. What are the differences between electron affinity and electronegativity? What are the hybridization of central element in PCl_{3} and PCl_{5}. Explain racemization with example.
$3+3+2+2=10$
একটি H-পরমাণুর দ্বিতীয় বোর কক্ষের ব্যাসার্ধ নির্ণয় করো। ইলেকট্ট্রন আসক্তি এবং ইলেকট্রোনেগোটিভিটি-র মধ্যে পার্থকাগুলি লেখো। PCl_{3} ও $\mathrm{PCl}_{5}-$ এর কেন্দ্রীয় মৌলের সংকরায়ণ কী? উদাহরণসহ রেসিমাইজেশন ব্যাখ্যা করো।

B.Sc. Semester I (Honours) Examination, 2018-19 CHEMISTRY

Course ID : 11411

Course Code : SHCHE/101/C-1(T)

Course Title: Organic Chemistry-I

Time: 1 Hour 15 Minutes

Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words
as far as practicable.

1. Answer any five questions:
(a) Why Carbon-Carbon bond length in tetrafluoroethylene is less than that in ethylene?
(b) Which is the smallest aromatic substance?
(c) Draw Frost diagram for benzene.
(d) What is the basic difference between epimer and enantiomer?
(e) Which of the following species behave both as nucleophile(s) and electrophile(s)?

(f) Which carbocation is more stable and why?

(g) Draw the structure of (E)-oxime of acetophenone.
(h) Draw the threo-form of 3-bromo-2-butanol in Fischer Projection formula.
2. Answer any two of the following:
(a) (i) What is Molecular rotation? Mention the factors affecting specific rotation of organic compounds.
(ii) A sample of 2-methyl-1-butanol has a sp. rotation, $[\alpha]_{D}^{25}=+1 \cdot 5^{\circ}$. What is the \% enantiomeric excess of the sample? What enantiomer is in excess, the $\mathrm{R}(+) / \mathrm{S}(-)$? [For (R)-(+)-2-methyl-1-butanol, $\left.[\alpha]_{D}^{25}=+5 \cdot 76^{\circ}\right]$
(iii) Draw the M.O. picture of LUMO for 1,3-butadiene.
(b) (i) Why the m.pt. of sulphanilic acid is so high?
(ii) Label the C-3 centres of the following molecules as stereogenic, non-stereogenic and chirotopic/achirotopic. Justify your answer.

(iii) What is the state of hybridization in each of the following carbanions?

(c) (i) Classify the following molecule/ion into aromatic, non-aromatic and anti-aromatic. Give reason.

(I)

(II)

(III)
(ii) Designate R / S descriptors in the following molecules.

(I)

(II)
(d) (i) Define with example(s): Radical reaction and pericyclic reaction
(ii) Calculate the formal charge on oxygen atom in methoxide ion.
(iii) Compare the dipole moment of the following compounds:

3. Answer any one of the following questions:
(a) Give the product(s) of the following reactions:
(i)

Give the structure(s) and comment on the stabilities of the product formed in the above reactions.
(ii) Depict the symmetry elements present in NH_{3} molecule and indicate its point group.
(iii) Draw the structures of

$$
\stackrel{+}{\mathrm{C}} \mathrm{H}_{3} \text { and } \stackrel{+}{\mathrm{C}} \mathrm{H}_{5}
$$

(iv) Compare the b. pt. of isomeric pentones with reason.
(v) What are the structural features required for the generation of carbanions? Explain with example.
$3+2+1+2+2=10$
(b) (i) Give the intermediate(s) and product(s) of the following reactions, and comment on the optical properties of the product(s).
(p)

(q)

(ii) Rank the following carbanion in order of decreasing stability and explain the order.

(iii) Discuss the principle of resolution of a racemic mixture of 2-ethyl hexanoic acid.
(iv) Give example of an organic molecule having only C_{2} element of symmetry.
(v) In the following reaction identity the substrate, nucleophile and leaving group. Mention the type of reaction.

