B.Sc. 1st Semester (Honours) Examination, 2020-2021

CHEMISTRY

Course ID: 11411
Course Code: SH/CHEM/101/C1

Course Title: Organic Chemistry I

Time: 1 Hour 15 Minutes

Full Marks: 25
The figures in the margin indicate full marks.
Candidates are required to give their answers in their own words as far as practicable.

1. Answer any five questions:
(a) Draw the structure of intermediate

(b) Which of the $\mathrm{C}-\mathrm{N}$ bond (a or b) has a higher bond length and why?

(c) Draw the orbital picture of $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{C}=\mathrm{O}$.
(d) 'Dipole moments of $\mathrm{Me}-\mathrm{F}$ (1.56D) and $\mathrm{Me}-\mathrm{Cl}$ (1.51D) are similar even though the fluorine is considerably more electronegative than chlorine'. Give reason(s).
(e) Give the correct order of stability of the following carbocations:
A)

B)

C)

(f) What is the difference between torsion angle and dihedral angle?
(g) Draw the elements of symmetry present in E-1,2-dichloroethene.
(h) Rank the following substances in order of decreasing heat of combustion.

1

2

3

4
2. Answer any two questions:
(a) (i) Which of the following compounds are aromatic, antiaromatic and non-aromatic? Justify your answer.
I)

II)

III)

IV)

(ii) Draw the π-MOs of allyl radical and mention the orbitals, which act as HOMO and LUMO.
(b) (i) Draw the orbital picture of a dissymmetric allene. Why it is dissymmetric? Explain.
(ii) Assign R/S-descriptors for the chiral centers in the following compounds.
I)

II)

III)

$$
2+3=5
$$

(c) (i) Which of the following pair of compounds could be separated by distillation?
(I)

(II)

(ii) Indicate the type of the following reaction: Addition/ Elimination/Substitution

(iii) Justify with an example that formal charges on atoms of a molecule and oxidation state of the same atoms in the same molecules are different aspects.
(d) (i) Compare the nucleophilicity of $\mathrm{NH}_{2} \mathrm{NH}_{2}$ and NH_{3} ?
(ii) Give the structures of products in each case with the structures of intermediate(s), if any.
I)

II) $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{CH}-\mathrm{NH}_{2}+\mathrm{HNO}_{2} \xrightarrow{\mathrm{NaNO}_{2}+\mathrm{HCl}}$?
3. Answer any one question:
$10 \times 1=10$
(a) (i) Explain the fact that the cyclopentadienone has shorter $\mathrm{C}=\mathrm{O}$ bond length than cycloheptatrieon(tropolon).
(ii) Predict the products (A) and (B) with suitable explainatiuon.

(iii) Calculate the e.e. and the specific rotation of a mixture containing 6.0 g of $(+)-2$-butanol and 4.0 g of (-)-2-butanol, the specific rotation of enantiomerically pure (+)-2-butanol is + 13.5°.
(iv) Outline the chemical method of resolution of (\pm)-2-methylpentanoic acid. $2+3+2+3=10$
(b) (i) Draw the orbital pictures of singlet and triplet carbene.
(ii) Explain addition of singlet carbene to $\mathrm{C}=\mathrm{C}$ bond is stereospecific but addition of triplet carbene to $\mathrm{C}=\mathrm{C}$ is not. Explain with reaction mechanism.
(iii) Predict the product(s) in the following reaction:

(iv) Give the product(s) of the following reactions:
I)

II)

III) $\mathrm{Cl}_{3} \mathrm{C}-\mathrm{CO}_{2} \mathrm{Na} \xrightarrow{\Delta}$?

$$
2+3+2+3=10
$$

